Innovative AI Applications in Hematologic Malignancies

A Comprehensive Overview of Current Applications and Future Directions

> Supervisor: Dr Bahlol Rahimi

Milad Rahimi rahimimiladofficial@gmail.com

Context and Importance

- Hematologic malignancies: diverse cancers affecting blood, bone marrow, and lymphatic systems
- Represent ~10% of all new cancer diagnoses worldwide
- Traditional diagnostic methods: time-consuming, costly, subject to variability
- Al offers unprecedented opportunities to transform blood cancer management
- Integration of AI represents a fundamental shift in clinical practice

Table of contents

Hematological Malignancies

Artificial Inteligence

Hematological Malignancies

Fundamental concepts of hematology and malignancies

Hematopoiesis

Hematopoiesis is blood cell production.
Your body continually makes new blood cells to replace old blood cells so you have a steady blood supply.
Hematopoiesis starts before birth and continues as a cycle throughout life.

© 2007 Terese Winslow U.S. Govt. has certain rights

National Cancer Institute (NIH)

https://commons.wikimedia.org/

Blood Cell Imbalances

Too Few (Anemia): Tiredness, weakness Tissues lack oxygen

Too Many (Erythrocytosis):

Thickens blood Risk of heart attack or stroke

) White Blood Cells

Too Few (Leukopenia): Higher infection risk

Too Many (Leukocytosis):

Sign of infection Possible blood disorder or cancer

Too Few (Thrombocytopenia): Bleeding, easy bruising

Too Many (Thrombocytosis): Risk of blood clots

HAEMATOLOGY

COMPLETE BLOOD COUNT (CBC)

TEST		VALUE	UNIT	REFERENCE
HEMOGLOBIN		15	g/dl	13 - 17
TOTAL LEUKOCYTE COUNT		5,100	cumm	4,800 - 10,800
DIFFERENTIAL LEUCOCYTE COUNT				
NEUTROPHILS		79	%	40 - 80
LYMPHOCYTE	L	18	%	20 - 40
EOSINOPHILS		1	%	1 - 6
MONOCYTES	L	1	%	2 - 10
BASOPHILS		1	%	< 2
PLATELET COUNT		3.5	lakhs/cumm	1.5 - 4.1
TOTAL RBC COUNT		5	million/cumm	4.5 - 5.5
HEMATOCRIT VALUE, HCT		42	%	40 - 50
MEAN CORPUSCULAR VOLUME, MCV		84.0	fL	83 - 101
MEAN CELL HAEMOGLOBIN, MCH		30.0	Pg	27 - 32
MEAN CELL HAEMOGLOBIN CON, MCHC	н	35.7	%	31.5 - 34.5

https://www.labsmartlis.com/cbc-report-format

Blood cells that are part of the immune system

- \rightarrow *defend* against foreign invaders
- **Nucleated**, unlike:
 - **RBCs** anucleated
- \rightarrow **O** Platelets not even full cells \cong
 - Derived from multipotent stem cells

White Blood Cells

https://irepertoire.com/

ν Normal WBC count: *4,000 – 11,000 cells/μL*

- Compared to **RBCs**: *4–5 million/µL!*
- WBCs make up only 1% of total blood cell population
- 🛠 Critical part of the "Immune System"

Clinical Ranges

WBC

Count &

Classification

• 📉 < 4,000 → Leukopenia

• \swarrow > 11,000 \rightarrow Leukocytosis

Classification

By Structure:

- Granulocytes
- Agranulocytes

By Cell Lineage:

- Myeloid
- Lymphoid

Leukemia

Blood & bone marrow involvement.

Some leukemias have a lymphoma component.

Lymphoma

Lymph nodes, MALT, spleen, bone marrow.

Many lymphomas have small leukemia components.

Can you distinguish them under the microscope?

- X Non, impossible!
- You need flow cytometry

Flow cytometry detects "clusters of differentiation" (CD markers)

Cell Types & Markers

♦ Natural Killer (NK) Cells : CD16, CD56

🔶 T-Cells

- T-helper cells: CD3, CD4
- T-cytotoxic cells: CD3, CD8

♦ B-Cells: MHC II, CD19, CD20

- More common in adults than in children
- Males > Females

ALL (Acute Lymphoblastic Leukemia)

- Most common leukemia overall
- Most common cancer in children

Age Group	Likely Leukemia Type
Newborn – 14 years	ALL
40 – 60 years	AML or CML
Over 60 years	CLL

Overview of AI & its applications in Blood Malignancies

Fundamental concepts of AI in healthcare and blood malignancies

Definition of AI and Its Subsets

simulation of human intelligence in machines

Machine Learning

Artificial Inteligence

systems that learn from data and improve with experience

🕤 Deep Learning

neural networks with multiple layers for complex pattern recognition

Natural Language Processing

enables interaction between computers and human language

Computer Vision combines image processing with deep learning for visual analysis

AI Applications in blood Malignancies ...

AI Applications in Diagnostics

Lets go... Al is going to prepare for using in smart hospitals. Figure 1: Categorization of AI applications in hematologic malignancies by type and pathway stage. Source: El Alaoui et al., 2022

Challenges in Traditional Diagnostic Methods

- Labor-Intensive Processes
- Inter-Observer Variability
- Limited Standardization
- Diagnostic Delays
- **Resource Constraints**
- Integration Challenges

AI Solutions in Diagnostic Methods

Labor-Intensive Processes	Automated Image Analysis	
Inter-Observer Variability	Robust algorithms	
Limited Standardization	Standardized algorithms	
Diagnostic Delays	Real-time analysis	
Resource Constraints	Resource optimization	
Integration Challenges	Seamless integration	

Automated Cell Differentiation

ConcatNeXt: An automated blood cell classification with a new deep convolutional neural network

A large dataset of white blood cells containing cell locations and types, along with segmented nuclei and cytoplasm

Detection of Malignant Cells

t(11;16)(q23;p13)/*KMT2A-CREBBP* in hematologic malignancies: presumptive evidence of myelodysplasia or therapy-related neoplasm?

Al for Genetic Data Interpretation

Genomic Analysis and Mutation Detection

National Center for Biotechnology Information (US).

Al for Genetic Data Interpretation

Chromosomal Abnormality Identification

- Automated karyotyping
- Detection of subtle aberrations
- Integration with FISH and molecular data

National Center for Biotechnology Information (US).

AI Applications in Prognostics

Lets go... Al is going to prepare for using in smart hospitals.

Predictive Models for Disease Progression

Risk Stratification Algorithms

- Provide dynamic risk assessments that evolve over time

- Create personalized risk profiles beyond conventional categories

- blood malignancies outcome prediction incorporating novel parameters

- Early molecular relapse detection before clinical manifestation

Survival Prediction and Complication Detection

Multi-Modal Data Integration

- Imaging-based prognostication
- Multi-omics integration
- Ensemble approaches for superior

accuracy

- Validation across diverse populations

- infection risk prediction
- Chemotherapy toxicity models
- Transplant-related mortality prediction
- Cardiotoxicity risk assessment
- Neurotoxicity prediction for CAR-T therapy

AI Applications in Treatment

Lets go... Al is going to prepare for using in smart hospitals.

AI-Driven Treatment Selection

Predicting Response to Chemotherapy

- Analysis of patient-specific factors for response prediction

- Identification of resistance patterns
- Combination therapy selection
- Real-time adaptation of treatment recommendations

- Risk-adapted therapy guidance
- Frailty assessment for elderly patients
- Transplant eligibility prediction

Decision Support and Precision Medicine

Clinical Decision Support

- Comprehensive donor matching
- GVHD risk prediction
- Optimal treatment sequencing
- Clinical trial matching

- Genomic-guided therapy
- Transcriptomic analysis
- Proteomic integration
- Metabolomic profiling
- Epigenetic mapping
- Integrative analysis platforms

Transforming Hematologic Oncology with AI

🛕 Diagnosis

• Al enhances precision in detecting blood cancers by automating blast identification, dysplasia detection, and cytogenetic analyses.

📈 Risk Prediction

• Al models identify complex patterns to predict relapse, treatment complications, and survival.

Transforming Hematologic Oncology with AI

• Machine learning optimizes chemotherapy selection and intensity based on patient-specific data.

🗱 Overall Impact

- Al bridges diagnostic, prognostic, and therapeutic domains.
- It supports clinical decision-making, improves efficiency, and fosters precision medicine in hematologic malignancies.

Papers Review

Review some beneficial studies on this field

Article Open access Published: 07 August 2017

Machine learning applications for prediction of relapse in childhood acute lymphoblastic leukemia

Liyan Pan, Guangjian Liu, Fangqin Lin, Shuling Zhong, Huimin Xia, Xin Sun 🗠 & Huiying Liang 🗠

<u>Scientific Reports</u> **7**, Article number: 7402 (2017) <u>Cite this article</u>

Objectives or Aims

What problem does it solve?

• Current prognostic models are insufficient for accurately predicting relapse.

Research Question:

• Can machine learning algorithms predict relapse in childhood ALL using clinical variables?

Study Aim:

• To construct and validate a relapse prediction model for childhood ALL based on machine learning techniques applied to clinical data.

Methods

Data Type and Size:

- Clinical data from 336 newly diagnosed ALL children for training.
- An independent test set of 84 patients for validation.

Machine Learning Models Used:

• Random Forest (RF) algorithm was employed to build the prediction model.

Validation Methods:

- Monte Carlo cross-validation nested within 10-fold cross-validation for feature ranking.
- An independent dataset was used to evaluate model performance.

Results

Key Findings:

- The Random Forest model with 14 selected features achieved:
 - Cross-validation accuracy: 82.7% ± 3.1%
 - Independent test set accuracy: 79.8%
 - Area Under the Curve (AUC): 0.902 ± 0.027 (cross-validation), 0.904 (test set)

Significant Predictors:

• Features such as white blood cell count, age at diagnosis, and minimal residual disease levels were among the top predictors.

SIMIR Medical Informatics

Journal Information 🗸

Browse Journal 🗸

Published on 08.04.2020 in Vol 8, No 4 (2020): April

A Hematologist-Level Deep Learning Algorithm (BMSNet) for Assessing the Morphologies of Single Nuclear Balls in Bone Marrow Smears: Algorithm Development

Yi-Ying Wu¹ (D); Tzu-Chuan Huang¹ (D); Ren-Hua Ye¹ (D); Wen-Hui Fang² (D); Shiue-Wei Lai¹ (D); Ping-Ying Chang¹ (D); Wei-Nung Liu¹ (D); Tai-Yu Kuo¹ (D); Cho-Hao Lee¹ (D); Wen-Chiuan Tsai³ (D); Chin Lin^{4, 5} (D)

Objectives or Aims

What problem does it solve?

• The study aims to develop a deep learning model to assist in interpreting bone marrow smears, enhancing diagnostic efficiency and consistency.

Research Question:

• Can a deep learning model match hematologist-level performance in interpreting bone marrow smears?

Study Aim:

• To develop and validate BMSNet, a deep learning model for detecting and classifying hematopoietic cells in bone marrow smears.

Method

Data Type and Size:

- 122 bone marrow smears photographed from January 2016 to December 2018.
- Development cohort: 42 smears with 17,319 annotated cells.
- Validation cohort: 70 smears.
- Competition cohort: 10 smears.

AI/ML Models Used:

• BMSNet: A convolutional neural network based on YOLO v3 architecture for detecting and classifying single cells.

Results

Key Findings:

- BMSNet achieved an average precision of 67.4% for bounding box prediction.
- In detecting >5% blasts in the validation cohort:
 - BMSNet AUC: 0.948
 - Hematologists AUC: 0.929
 - Pathologists AUC: 0.985
- In detecting >20% blasts:
 - BMSNet AUC: 0.942
 - Hematologists AUC: 0.981
 - Pathologists AUC: 0.980

Article Open access Published: 16 March 2020

Artificial Intelligence based Models for Screening of Hematologic Malignancies using Cell Population Data

<u>Shabbir Syed-Abdul</u>, <u>Rianda-Putra Firdani</u>, <u>Hee-Jung Chung</u> ^M, <u>Mohy Uddin</u>, <u>Mina Hur</u>, <u>Jae Hyeon Park</u>,

Hyung Woo Kim, Anton Gradišek & Erik Dovgan

Scientific Reports 10, Article number: 4583 (2020) Cite this article

Objectives or Aims

What problem does it solve?

- Traditional diagnostic methods can be time-consuming and may lack sensitivity.
- The study explores the use of AI to enhance screening processes, aiming for quicker and more accurate detection of blood cancers.

Research Question:

• Can machine learning algorithms effectively screen for hematologic malignancies using Cell Population Data (CPD)?

Study Aim:

• To develop and evaluate AI-based models that utilize CPD for the screening of hematologic malignancies, potentially improving diagnostic accuracy and efficiency.

Methods

Data Type and Size:

- Utilized CPD from routine Complete Blood Count (CBC) tests.
- Total of 882 cases: 457 with hematologic malignancies and 425 without.

AI/ML Models Used:

- Seven machine learning algorithms were tested:
 - Stochastic Gradient Descent (SGD) --- Support Vector Machine (SVM)
 - Random Forest (RF) --- Decision Tree (DT)
 - Linear Model --- Logistic Regression
 - Artificial Neural Network (ANN)

Results

Key Findings:

- <u>The Artificial Neural Network (ANN) model outperformed other algorithms.</u>
- ANN achieved:
 - Accuracy: 82.8%
 - Precision: 82.8%
 - Recall: 84.9%
 - Area Under the Curve (AUC): 93.5% ± 2.6

Utilizing CPD, which is readily available from routine blood tests, can facilitate early detection without additional testing.

Leukemia Research

Volume 109, October 2021, 106639

A machine learning approach to predicting risk of myelodysplastic syndrome

Ashwath Radhachandran¹, Anurag Garikipati, Zohora Iqbal¹ $\stackrel{\frown}{\sim}$ \boxtimes , Anna Siefkas, Gina Barnes, Jana Hoffman, Qingqing Mao, Ritankar Das

Objectives or Aims

What problem does it solve?

- MDS is often underdiagnosed and recognized late.
- This study presents a machine learning model that uses routine EHR data to predict MDS one year before clinical diagnosis.

Research Question:

• Can we accurately predict the risk of developing MDS using non-specialized, routinely collected EHR data?

Aim of the Study:

- Develop and validate a machine learning algorithm (MLA) to predict MDS risk without needing bone marrow data or genetic testing.
- Enable early detection and potential timely intervention for high-risk patients.

Methods

Dataset:

- Retrospective cohort of **790,470 patients**, aged 45+, across 700+ US healthcare sites (2007–2020).
- Data includes:
 - Demographics (age, sex)
 - Vital signs (HR, BP, SpO₂, temp, etc.)
 - Lab values (CBC, metabolic panel, etc.)
 - Diagnosis codes (ICD-9/10)

Models Used:

• XGBoost, Logistic Regression (LR), Artificial Neural Network (ANN)

Temporal validation:

Limitation :

- Train set: 2007–2017.
- Test set: 2018-2020.
- Retrospective design (potential EHR biases).
- Generalizability to non-U.S. populations untested.

Model	AUROC (±SD)	Sensitivity	Specificity
XGBoost	0.87	79%	80%
Logistic Regression	0.838	75%	77%
ANN	0.832	74%	76%

An Efficient Multi-Level Convolutional Neural Network Approach for White Blood Cells Classification

by César Cheuque ¹ 🖂 💿, Marvin Querales ² 🖂 💿, Roberto León ¹ 🖂 💿, Rodrigo Salas ^{3,4} 🖂 💿 and Romina Torres ^{1,4,*} 🖂 💿

- ¹ Facultad de Ingeniería, Universidad Andres Bello, Viña del Mar 2531015, Chile
- ² Escuela de Tecnología Médica, Universidad de Valparaíso, Viña del Mar 2540064, Chile
- ³ Centro de Investigación y Desarrollo en Ingeniería en Salud, Escuela de Ingeniería C. Biomédica, Universidad de Valparaíso, Valparaíso 2362905, Chile
- ⁴ Instituto Milenio Intelligent Healthcare Engineering, Valparaíso 2362905, Chile
- * Author to whom correspondence should be addressed.

Diagnostics 2022, 12(2), 248; https://doi.org/10.3390/diagnostics12020248

Submission received: 30 November 2021 / Revised: 17 December 2021 / Accepted: 28 December 2021 / Published: 20 January 2022

Objectives or Aims

Research Question:

- Can a multi-level convolutional neural network (CNN) effectively classify different types of white blood cells in peripheral blood smear images?
 Study Aim:
- To develop and evaluate a two-stage hybrid multi-level CNN model that classifies WBCs into four categories: lymphocytes, monocytes, neutrophils, and eosinophils.
 What problem does it solve?
- The study addresses the need for an automated, efficient, and accurate method to classify WBCs, reducing reliance on manual processes and improving diagnostic consistency.

Methods

Data Type and Size:

• Peripheral blood smear images containing various WBCs.

AI/ML Models Used:

- A two-stage hybrid model:
 - **Stage 1:** Faster R-CNN for detecting regions of interest and separating mononuclear from polymorphonuclear cells.
 - **Stage 2:** Two parallel CNNs with MobileNet architecture for subclass classification.

Results

Model Performance :

Key Findings:

- Accuracy: 96.5%.
- Precision: 96.2%.
- Recall: 96.0%.
- F1-Score: 96.1%.

- The proposed model achieved high classification accuracy across all four WBC types.
- Demonstrated improved performance over traditional
 - single-level classification models.

Conclusion

Discuss important topics and current challenges in this field

- Technical Infrastructure Requirements
- Clinician Adoption Barriers
- Cost-Effectiveness Considerations

Integration Challenges

Areas Needing Further Investigation

- Rare hematologic malignancies
- Pediatric applications
- Treatment sequencing optimization
- Enhanced MRD detection
- Explainable AI for clinical adoption

Summary of Key Points

- Al is enhancing diagnostic precision in hematologic malignancies
- Prognostic models are becoming more sophisticated and accurate
- Treatment personalization is advancing through AI applications
- Implementation is progressing despite remaining challenges
- > Ethical considerations are paramount for responsible development
- The future holds promising technologies and approaches

Questions & Discussion

Thank you for your attention!

Contact Information:

rahimimiladofficial@gmail.com Urmia University of Medical Sciences

Refrences

- 1. El Alaoui Y, Elomri A, Qaraqe M, Padmanabhan R, Yasin Taha R, El Omri H, EL Omri A, Aboumarzouk O. A Review of Artificial Intelligence Applications in Hematology Management: Current Practices and Future Prospects. J Med Internet Res 2022;24(7):e36490
- 2. Wu YY, Huang TC, Ye RH, Fang WH, Lai SW, Chang PY, Liu WN, Kuo TY, Lee CH, Tsai WC, Lin C. A Hematologist-Level Deep Learning Algorithm (BMSNet) for Assessing the Morphologies of Single Nuclear Balls in Bone Marrow Smears: Algorithm Development. JMIR Med Inform 2020;8(4):e15963
- 3. Cheuque C, Querales M, León R, Salas R, Torres R. An Efficient Multi-Level Convolutional Neural Network Approach for White Blood Cells Classification. *Diagnostics*. 2022; 12(2):248. <u>https://doi.org/10.3390/diagnostics12020248</u>.
- 4. Pan, L., Liu, G., Lin, F. et al. Machine learning applications for prediction of relapse in childhood acute lymphoblastic leukemia. Sci Rep 7, 7402 (2017). https://doi.org/10.1038/s41598-017-07408-0
- 5. Syed-Abdul, S., Firdani, RP., Chung, HJ. et al. Artificial Intelligence based Models for Screening of Hematologic Malignancies using Cell Population Data. Sci Rep 10, 4583 (2020). https://doi.org/10.1038/s41598-020-61247-0
- 6. Ashwath Radhachandran, Anurag Garikipati, Zohora Iqbal, Anna Siefkas, Gina Barnes, Jana Hoffman, Qingqing Mao, Ritankar Das, A machine learning approach to predicting risk of myelodysplastic syndrome, Leukemia Research,